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1. Precise determination of the CKMmixing angle jVubj will most likely come from semilep-

tonic B decays. Two competing strategies exist, the study of the end-point region in in-

clusive decays and the analysis of various exclusive decay channels, most notably B ! �e�

which is the easiest one to access experimentally. The theoretical challenge in the latter

case is to calculate the B ! � transition form factor f+(q
2) induced by the weak vector

current:

h�(p�)j�u�bjB(pB)i = (pB + p�)� f+(q
2) + (pB � p�)�f�(q

2) : (1)

Here q2 = (pB � p�)
2 is the square of the momentum transferred to the lepton pair; the

second form factor f� does not contribute to the decay rate for zero mass leptons and

will not be considered in this letter. The decay rate is dominated by contributions from

small values of q2, for which the u quark produced in the weak decay has large energy

of order mb=2 in the B meson rest frame (mb is the b quark pole mass). A consistent

QCD description of such processes exists up to now only in the Sudakov limit [1], in

which case contributions from large transverse quark-antiquark separations are suppressed

and the form factor is dominated by hard gluon exchange [2]. This limit is theoretically

interesting, but not relevant for realistic b quark masses. In fact, we will argue that \soft"

contributions related to large transverse distances exceed the \hard" contributions by an

order of magnitude (and have opposite sign). Any theoretical approach to heavy-to-light

decay form factors aiming at quantitative predictions has to deal with these \soft" terms

explicitly, as do e.g. light-cone sum rules and various models [3].

The consistent separation of \hard" and \soft" contributions in heavy-to-light decays

presents an unsolved problem which, to our knowledge, has never been tackled in a sys-

tematic way1. In this letter we examine a possibility for such a separation, based on our

calculation of the radiative corrections to the corresponding light-cone sum rules.

The basic idea of the light-cone sum rule approach is to consider a two-point correlation

function replacing the B meson state by a suitable interpolating current:

��(p
2
B; q

2) = i

Z
d4x e�ipBxh�(p�)jTf�u(0)�b(0)�b(x)i5d(x)gj0i

= (pB + p�)��+(p
2
B; q

2) + (pB � p�)���(p
2
B; q

2): (2)

The Lorentz-invariant function �+ has a pole at p2B = m2
B corresponding to the contribution

of the B meson:

�+(p
2
B; q

2) =
fBm

2
B

mb

f+(q
2)

m2
B � p2B

+ : : : ; (3)

where mB is the B meson (pole) mass and the dots stand for contributions from higher-

mass resonances and the continuum. The B meson decay constant fB is usually de�ned

as

mbh0j �d i5bjBi = m2
BfB: (4)

On the other hand, the correlation functions in (2) can be calculated in the Euclidean

region, p2B � m2
B large and negative, using the light-cone expansion. Up to higher twist

1One reason being that in the classical application, the pion form factor, the \soft" terms are suppressed

by one power of the momentum transfer.
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corrections the product of b quark �elds can be substituted by a perturbative propagator

and the tree-level result is

�+(p
2
B; q

2) =
1

2
f�mb

Z 1

0

du
��(u; �)

m2
b � up2B � �uq2

: (5)

Here and below �u = 1�u, ��(u; �) is the leading twist pion distribution amplitude de�ned

by

h�(p�)j�u(0)�5d(x)j0i x
2=0
= �if�p��

Z 1

0

du ei�up�x��(u; �) (6)

in Fock-Schwinger gauge and � is the factorization (renormalization) scale. The variable u

has the physical meaning of the momentum fraction carried by the u quark in the in�nite

momentum frame.

Next, we use the concept of duality, assuming that the contribution of the B meson

to (3) corresponds to an integral over the spectral density calculated within the light-cone

expansion, Eq. (5), in a certain duality interval:

�B meson
+ (p2B; q

2) =

Z s0

m2
b

ds

s� p2B
�(s; q2): (7)

The width of the duality interval is characterized by the parameter s0 (continuum thresh-

old) and in general is of order s0�m2
b � O(mb). The spectral density �(s; q

2) immediately

follows from Eq. (5) after a simple change of variables s! (m2
b � q2)=u+ q2. Thus, in this

particular case the duality restriction on the maximum invariant energy s0 translates into

a restriction on the minimum momentum fraction u0 carried by the u quark:

u0 =
m2

b � q2

s0 � q2
: (8)

Equating the representations (3) and (5) and isolating the contribution of the B meson

according to (7), we obtain the simplest version of the light-cone sum rule for f+(q
2), which

neglects higher twist and radiative corrections. In order to suppress the contributions of

higher order states, it is written in a Borel transformed form, which amounts to replacing

the factor 1=(s� p2B) by exp(�s=M2) and 1=(m2
B � p2B) by exp(�m2

B=M
2):

fBm
2
B

f�m
2
b

e(m
2
b
�m2

B
)=M2

f+(q
2) =

1

2

Z 1

u0

du
��(u; �)

u
e��u(m

2
b
�q2)=(uM2): (9)

Here M2 is the Borel parameter.

2. The accuracy of the sum rule (9) can be improved by including higher twist and

radiative corrections. The former ones have been calculated earlier [4, 5]; Eq. (79) in [5]

gives the complete result to twist 4 accuracy, which we will use in the numerical analysis.

We have calculated �rst order radiative corrections to the leading twist term (9) The

calculation is straightforward and similar to earlier calculations of the radiative correction
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to the � ! � form factor [6], but more cumbersome because of the nonzero b quark

mass. In the MS-scheme, the result reads:

fBm
2
B

f�m
2
b

e(m
2
b
�m2

B
)=M2

f+(q
2) =

1

2

Z 1

u0

du
��(u; �)

u
e��u(m

2
b
�q2)=(uM2)

� CF

�s

4�
em

2
b
=M2

8<
:
Z 1

0

du
��(u; �)

�u

Z s0

m2
b

dt
m2

b � t

t� q2

�
2

t
+ L1

�
e�t=M

2

+

Z u0

0

du
��(u; �)

�u
e�

m2
b
��uq2

uM2

Z s0

m2
b

dt (m2
b � t)

e�
ut+�uq2�m2

b

uM2

m2
b � ut� �uq2

L2

+

Z 1

u0

du
��(u; �)

�u
e�

m2
b
��uq2

uM2

2
4Z s0

m2
b

dt (m2
b � t)

e�
ut+�uq2�m2

b

uM2 � 1

m2
b � ut� �uq2

L2 +

Z s0

m2
b

dt L2

�
Z t0

m2
b

dt
m2

b � q2

t� q2

�
m2

b � t

t(m2
b � q2)

+ L1

�
e�

t�m2
b

uM2

3
5

+

Z 1

u0

du
��(u; �)

u
e�

m2
b
��uq2

uM2

2
45
2
� E

2
+ 2 ln

uM2

m2
b

� 3

2
ln
uM2

�2
+
1

2
Ei

�
m2

b � t0

uM2

�

+

Z s0

m2
b

dt L2 +

Z
1

s0

dt
(m2

b � q2) L2

m2
b � ut� �uq2

+

Z t0

m2
b

dt

�
1

t
� L2

�
e�

t�m2
b

uM2

+

Z t0

m2
b

dt

�
1

2
� (t�m2

b)
2

2t2
+ (m2

b � q2) (L1 + L2)

�
e�

t�m2
b

uM2 � 1

m2
b � t

�
Z
1

t0

dt

m2
b � t

�
1

2
� (t�m2

b)
2

2t2
+ (m2

b � q2) (L1 + L2)

� 3
5
9=
; ;(10)

where mb is the one-loop pole mass, Ei(x) the exponential-integral function, de�ned as

Ei(x) = � R1
�x

dy e�y=y, t0 � us0 + �uq2 and

L1 =
1

t� q2

�
�1 + ln

(t�m2
b)

2

t�2

�
; L2 =

1

t� q2

�
�m

2
b

t
+ ln

(t�m2
b)

2

t�2

�
: (11)

Details of the calculation will be published elsewhere. We have checked that the � de-

pendent terms cancel the � dependence of the distribution amplitude ��(u; �) to leading

logarithmic accuracy [7]. We have also checked that our results agree with the recent re-

sults of Ref. [8], where a similar calculation is reported, both analytically for the amplitude
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in momentum space and numerically for the �nal sum rule after Borel transformation and

continuum subtraction. Our representation for the �nal answer is simpler.

3. In order to gain a better understanding of the structure of radiative corrections, it

is convenient to go to the heavy quark limit mb ! 1. In this limit the dimensionful

parameters fB, s0 and M2 have to be rescaled as

fB = 1=
p
mb f

stat(� = mb); mB �mb = ��;

s0 = m2
b + 2mb!0; M2 = 2mb�; (12)

where !0 and � are the nonrelativistic continuum threshold and the Borel parameter,

respectively. The heavy quark limit of the form factor depends crucially on the value of

q2. As we are only interested in small values q2 � m2
b , we will set q

2 = 0 in this discussion

for simplicity.

In this limit the momentum fraction cut-o� (8) becomes u0 = 1� 2!0=mb, so that the

integration region in (9) shrinks to a narrow interval near the end-point, corresponding

to all the pion momentum being carried by the u quark. Since close to the end-point

��(u; �) � (1� u), we obtain

f stat(� = mb)p
mbf�

e�
��=�f+(0) = � 2

m2
b

�0�(1)

Z !0

0

d! !e�!=� (13)

where �0�(u) = (d=du)��(u). Note that �
0

�(1) < 0. One thus �nds f+(0) � m
�3=2
b , at least

at tree level [9, 10].

The full expression for the radiative corrections looks rather complicated; to make its

structure more transparent we take the limit � !1, corresponding to the so-called local

duality approximation:

f stat(mb)

f�
[m

3=2
b f+(0)] =

= �!2
0�
0

�(1)

�
1 +

�s

�
Cf

�
1 + �2

4
+ ln

mb

2!0
� 1

2
ln2

mb

2!0
+
1

2
ln
2!0

�

��

� !2
0

�s

�
Cf

��
1� ln

2!0

�

�Z 1

0

du

�
��(u)

�u2
+
�0�(1)

�u

�
� ln

2!0

�

Z 1

0

du
��(u)

�u

�
: (14)

This expression deserves to be studied in some detail. Let us interpret the two pieces: the

�rst term on the right-hand side must be identi�ed with the soft (end-point) contribution

including the Born-term and its radiative correction, while the second term corresponds to

the usual mechanism of hard gluon exchange.

The dependence on the collinear factorization scale � must cancel the scale dependence

of the pion distribution amplitude. This implies that the structure of terms in ln� in

the hard contribution is �xed by the structure of the leading order soft term which is
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proportional to �0�(1; �). Indeed, we �nd

d

d ln�
�0�(1; �) =

�s

�
Cf

d

dx

�Z 1

0

dy V0(x; y)��(y; �)

�
x!1

= � �s

�
Cf

�Z 1

0

du

�
��(u) + �u�0�(1)

�u2
+
��(u)

�u

�
� 1

2
�0�(1)

�
; (15)

where V0(x; y) is the usual Brodsky-Lepage kernel, so that the structure of ln� terms in (14)

is reproduced. Note the subtraction term accompanying the naively divergent expressionR
du��(u; �)=�u

2 [2], which is similar to the usual \plus" prescription in the evolution kernel.

Local duality means that we identify the B meson with a b quark accompanied by

an arbitrary number of light quarks and gluons with total energy less than !0 (in the b

quark rest frame). Consider the \deep inelastic" cross section of neutrino scattering o�

a pion, in which one selects the contribution of the charged weak current with a b quark

in the �nal state: d�=dM2
X(�e + � ! Xb + e), where M2

X is the invariant mass of the

hadronic �nal state. In the approximation adopted in this letter we identify the integral

of this cross section over the region of small invariant masses M2
X < m2

b + 2mb!0 with

the square of the form factor for the inverse process F (�� ! eB) (up to kinematical

factors). This interpretation is useful in several aspects. It is easy to check that the \soft"

contribution in (14) corresponds to the would-be leading twist contribution to the deep

inelastic cross section, while the \hard" contribution (involving interaction with the quark-

spectator) is of higher twist. These two terms are of the same order (in the b quark mass)

since the leading twist contribution is additionally suppressed by a factor 1=m2
b for small

values of the invariant mass of the hadronic system, because the corresponding parton

distribution (in the pion, for the case at hand) vanishes at the end-point x ! 1. With a

low collinear factorization scale � � !0 all quark mass dependence in (14) is due to the

\soft" contribution and thus to the leading twist part of the cross section. This suggests

that resummation of heavy quark mass logarithms can be done using the same techniques

as for the end-point spectrum in inclusive b ! u decays [11]. A detailed discussion goes

beyond the scope of this letter.

A �nal remark concerns the size of the radiative correction. With the natural factoriza-

tion scale � = 2!0 ' 2 GeV and with mb ' 5 GeV the quark mass logarithms are of order

unity and the large constant term dominates. It has to be compared, however, to the large

radiative correction which was found in QCD sum rules for the decay constant f stat. In

the same (local duality) approximation and neglecting contributions of condensates, one

�nds [12]

f stat(mb) =
!
3=2
0

�

�
1 +

�s

�
Cf

�
15

8
+
1

6
�2 +

3

4
ln

mb

2!0

��
: (16)

We see that the large radiative corrections almost cancel each other between f stat and the

right-hand side of (14). This shows that the form factor itself is free from large radiative

corrections in the light-cone sum rule approach. The same cancellation takes place in the

complete expressions with �nite b quark mass.

4. We have carried out a detailed numerical analysis of the complete sum rules with

�nite b quark mass and including radiative and higher twist corrections. To this end we
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substitute the value of fB in (10) by the corresponding sum rule [13] including radiative

corrections with the same value of the continuum threshold and the same Borel parameter.

In particular, we use the range 5GeV2 < M2 < 8GeV2 and mb = f4:6; 4:7; 4:8gGeV with

the continuum thresholds s0 = f35; 34; 33:5gGeV2, respectively. The resulting value for

fB is (175 � 25)MeV, which is in agreement with the current lattice average [14]. We do

not attempt a renormalization group improvement (resummation of lnmb) of the sum rules

and set the factorization scale to � =
p
m2

B �m2
b ' 2:4 GeV. The scale dependence of our

results is in fact negligible. A remark is in order about the actual choice of M2 in Eq. (10).

The expansion turns out to be essentially in inverse powers of uM2 rather than M2 itself.

In order to avoid small values of this \e�ective" parameter uM2 for large q2 (where u can

become small), we use the rescaled value M2 = M2
2pt=hui in the Borelized expression for

the correlation function �+ and M2
2pt in the above mentioned range in the sum rule for fB.

hui is the average value of u in the integral in (9) with hui � 0:87 for q2 = 0 and hui � 0:72

for q2 = 15GeV2. Variations of the Borel parameter in the chosen window result in an

minimal uncertainty in the prediction for the form factor of about 10%, independent of q2.

We are going to discuss the other remaining uncertainties in detail.

Radiative corrections. Radiative corrections to the light-cone sum rule have been pre-

viously suspected to be signi�cant. It was expected, however, that large corrections to the

correlation function �+ partially cancel with large corrections to the coupling fB in the

ratio f+ � �+=fB. To quantify this e�ect, we write, schematically,

f+ �
�0
+

�
1 + �1

+
�s
�

�
f 0B (1 + f 1B

�s
� )

; (17)

where �0
+ and f 0B are the tree-level contributions and �1

+ and f 1B specify the corrections.

For central values of the input parameters, we �nd f 1B ' 3:0 and �1
+ = f2:4; 2:3; 2:2; 2:1g

for momentum transfers q2 = f0; 5; 10; 15gGeV2, respectively. Thus the corrections indeed

cancel each other to a large extent. The \hard" contribution to �1
+, de�ned by the terms

in (10) involving an integral over u in the interval 0 < u < u0, is �0:5 (at q2 = 0), whereas

the radiative correction to the \soft" contribution u0 < u < 1 is +2:9. The resulting net

e�ect of radiative corrections is shown in Fig. 1, where we plot f+ as a function of q2

for two di�erent choices of the pion distribution amplitude (DA), see below. The curves

marked LO (NLO) are obtained by neglecting (including) radiative corrections in both the

numerator and the denominator in (17). The size of the correction is at most -7%, thus

providing an a posteriori justi�cation of the procedure of Refs. [4, 10, 5] to use a low value

of fB in leading order light-cone sum rules.

Pion distribution amplitude. The main input in the sum rules is the pion distribution

amplitude �� de�ned in (6), which can conveniently be expanded in a series of Gegenbauer

polynomials with multiplicatively renormalizable coe�cients an (to leading logarithmic

accuracy):2

��(u; �) = 6u(1� u)
h
1 + a2(�)C

3=2
2 (2u� 1) + a4(�)C

3=2
4 (2u� 1) + : : :

i
: (18)

2We neglect two-loop anomalous dimensions and also the mixing of the an, which occurs at two-loop

accuracy. The corresponding expressions are available in the literature and can easily be incorporated in

the analysis. Their e�ect is, however, negligible compared to uncertainties in the numerical values of the

an.

6



0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6

0 2 4 6 8 10 12 14 16

f +
(q

2 )

q2[GeV2]

f+ in NLO

f+ in LO

f+ in NLO with asymptotic DA

f+ in LO with asymptotic DA

Figure 1: f+(q
2) as a function of q2 for two di�erent sets of the leading twist pion distri-

bution amplitude. The e�ect of including radiative corrections is a reduction of the form

factor by about (4{7)%.

0

0.5

1

1.5

0 2 4 6 8 10 12 14 16
q2[GeV2]

f+(q2)
asymptotic twist 2 DA

a2, twist 2 DA

a4, twist 2 DA

twist 3 DAs

twist 4 DAs

Figure 2: The several contributions to the light-cone sum rule for the form factor as a

functions of q2, using the leading twist distribution amplitude of [19].
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0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25

dB
/d

q2
[V

ub2
G

eV
−2

]

q2[GeV2]

DA [19]
asympt. DA

VDM

Figure 3: The spectrum dB(B ! �e�)=dq2 as a function of q2. Solid line: central values of

the input parameters, using the distribution amplitude (DA) [19]; dashed-dotted line: the

same using the asymptotic DA; dotted line: the vector dominance approximation (VDM).

The dashed lines indicate the range of the theoretical uncertainties. See also text.

The values of the nonperturbative coe�cients an can be restricted from experimental data,

most notably from the �� form factor. As argued in [15], the recent measurements by

CLEO [16] are consistent with the distribution being close to its asymptotic form. On the

other hand, the old QCD sum rule results [17] indicate sizable corrections which, in view

of the criticism raised in [18], are probably overestimated. In our analysis we use the QCD

sum rule estimates a2 = 0:35 and a4 = 0:18 at the scale � = 2:4 GeV [19, 5] as upper bounds

for possible corrections to the asymptotic distributions. The resulting q2 dependence of

the form factor is displayed in Fig. 1 for the two choices | asymptotic and QCD sum rule

motivated | of the pion distribution amplitude. In Fig. 2 we show contributions of the

asymptotic distribution and the corrections separately. It is seen that (a) the contribution

of the second Gegenbauer polynomial � a2 can reach 20% and signi�cantly a�ects the

shape of the form factor as a function of q2 and that (b) with current estimates of their

magnitude, the contributions of higher polynomials (� a4) are negligible. We stress that

the size of these corrections will eventually be determined from experimental data.

Higher twist corrections. From Fig. 2 it is apparent that the twist three contribution

to the sum rule is large and of the same order as the leading twist contribution. An

inspection shows that this large contribution is entirely due to the asymptotic two-particle

distribution amplitudes of twist three, whose normalization is �xed by the quark condensate

[20]. A variation of h�qqi within the conservative limits �(230 � 250 MeV)3 yields an

uncertainty in f+(0) of at most �0:012, i.e. 4%. Corrections to the asymptotic two-particle

twist 3 distribution amplitudes are related to the three-particle distribution of twist 3 and
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proportional to the coupling f3� de�ned by the matrix element

h0j �d���5G�
�uj�+(p)i = 2if3�p�p� + : : : (19)

The constant f3� was estimated from QCD sum rules to be f3� = 0:0026GeV2�30% (at

the scale 2.4 GeV) [17]. The corresponding contribution to the form factor is within 2%.

Finally, the twist 4 contributions also turn out to be unimportant numerically, see Fig. 2, so

that we use the full set as speci�ed in [5] without detailed error analysis. The only essential

uncertainty in the higher twist e�ects thus comes from the yet uncalculated radiative

corrections to the twist 3 contribution: a +30% correction would increase the form factor

by about 10%.

Our �nal result for the spectrum dB(B ! �e�)=dq2 as a function of q2 using the QCD

sum rule motivated pion distribution amplitude and taking central values of the input

parameters is shown in Fig. 3 (solid curve). We evaluate the light-cone sum rules for

q2 < 17GeV2, where both the twist-expansion and the contribution of higher states are

well under control. At higher values of q2 the decay rate is strongly suppressed by the phase

space factor; for comparison, we show (dotted line) the spectrum calculated in the vector

dominance (VDM) approximation in this region, with the coupling gBB�� = (29 � 3) [5].

The uncentainties are illustrated by dashed lines. The spectrum decreases monotonically

with q2, which is a consequence of the broad pion distribution amplitude of [19]. The

asymptotic pion distribution produces a di�erent shape, see the dash-dotted curve, with

a maximum around q2 � 16 � 18 GeV2. We repeat that these two distributions present

two extreme possibilities and the ambiguity will eventually be removed. And vice versa,

measuring the spectrum in B ! �e� decays can distinguish between di�erent shapes of

the pion distribution amplitude.

To summarize, in this letter we have calculated the radiative correction to the light-cone

sum rule for the semileptonic B ! �e� form factor. We have studied its behaviour in the

heavy quark limit, which, as we believe, teaches us that factorization of \hard" and \soft"

subprocesses is generally valid in the heavy quark limit. From the numerical analysis of

the sum rule, we obtain the form factor at q2 = 0:

f+(0) = 0:25� 0:03� 0:01� 0:01 (20)

assuming the asymptotic pion distribution amplitude and

f+(0) = 0:30� 0:03� 0:01� 0:01 (21)

using the QCD sum rule motivated distribution [19]. The �rst error comes from the

variation of the Borel parameter within 5GeV2 < M2 < 8GeV2, the second one from the

error in the quark condensate and the third one from the combined uncertainties in mb

and f3�. Combining all errors in quadrature and averaging over the two di�erent leading

twist distributions, we get f+(0) = 0:28� 0:05 as our �nal result.

We also give a simple parametrization of the q2 dependence. For the asymptotic distri-

bution we �nd:

f+(q
2) =

0:25� 0:03

1� 1:72 q2=m2
B + 0:716 q4=m4

B

; (22)
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and for the QCD sum rule distribution [19]:

f+(q
2) =

0:30� 0:03

1� 1:32 q2=m2
B + 0:208 q4=m4

B

: (23)

Both representations reproduce the exact light-cone sum rule results to within 1% for

0 < q2 < 17GeV2. The inuence of the other input parameters on the q2-dependence is

negligible, so we do not give errors in the denominators in (22) and (23).

The total combined uncertainty of �0:05 can be reduced to �0:03 by calculating ra-

diative corrections to the asymptotic two-particle distributions of twist 3 and from more

detailed information on the pion distribution amplitude when it becomes available.
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